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Abstract

Bayesian estimators for the parameters of the finite

state Markov renewal process are developed, both for the

waiting time distributions and the transition probabilities.
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1. INTRODUCTION

--'This paper develops Bayesian statistical estimation

procedures for the finite state Markov renewal process. The

general case is treated where uncertainty exists about both

the waiting time distributions and the transition probabilities.

This work extends the Bayesian results of Martin (1967), who

only considers the Markov chain case, and Brock (1971), who

assumes that the waiting time distributions are known. Moore

and Pyke (1968) deal only with classical estimation methods.

The sampling schemes considered are either (1) to observe n

transitions and their associated waiting times, or, more generally,

--f2-)-to observe the process for some time T, where T is not

necessarily a transition time. k

2. THE MARKOV RENEWAL PROCESS MODEL

The Markov renewal process is a convenient and workable

generalization of both a Markov process and a renewal process,

incorporating the essential features of each. It is closely

related to the semi-Markov process independently investigated by

Levy [1954], Smith [1954] and Tak~cs [1954]. Essentially, a finite

state semi-Markov process is a stochastic process modelling

moves among a finite number of states with the successive states

visited forming a Markov chain and the length of stay in a given

state being a random variable, the distribution function of which

may depend on this (origin) state as well as on the one to be

visited next. The finite state semi-Markov process can then be

thought of as a Markov chain for which the time scale has been
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randomly transformed.

As noted by Pyke [1961a] the semi-Markov process is equiv-

alent to the Markov renewal process which records at each time

t the number of times an entity has visited each of the possible

states up to time t, if the entitv moves from state to state

according to a Markov chain, and if the time required for each

successive move is a random variable whose distribution function

may depend on the two states between which the move is being

made. An early application of the semi-Markov process was pur-

sued by Cane [1959]. Its application to the social science

phenomena of social mobility and migration is outlined by Ginsberg

[1971, 1972a,b] and it is reviewed briefly by Bartholomew [1973].

Statistical inference questions about the transition probabili-

ties are considered by Moore and Pyke [1968]. Building on the

work of Martin [1967], Brock [1971] examines a Bayesian pro-

cedure for inference about the transition probabilities.

We shall deal with a finite state space, labelled

S = {l,2,...,s}, and we let QiJ(t) denote the probability

that after making a transition into state i, the process next

makes a transition into state J, in an amount of time less

than or equal to t. Note explicitly that the Markov renewal

model allows for the possibility of transitions from state i

to state i. Such transitions may or may not have substantive

meaning in any particular application. For example, in migra-

tion studies a move within a particular geographic region

(state i) might signal a transition. On the other hand, in

reliability studies the states usually reflect the operating

status of a system, and a "within state" transition may have no

~ -. j



physical meaning. In this later case Qi1 (t) 0 0. But, in

general, we must have Qij(t) _ 0, i,j = l,...,s; t > 0. Let
s

Pij=Qi() =lim QiJ(t) and note that J P1=l, i=l,...,s.

if PiJ 0, let

iii

i -ii

(IfP =0, let Fij(t) be arbitrary.)

With this notation PiJ represents the probability that the

next transition will be into state J, given that the process

has just entered state i, and F i(t) represents the conditional

probability that a transition will take place within an amount

of time t, given that the process has just entered i and will

next enter J. When i is entered, the next state is chosen

according to the transition probabilities PiJ; then ziven that

the state chosen is J, the time until transition has a distri-

bution Fij(.). These quantities P and Fij(t) are estimable

from data through the transition frequencies and observed wait-

ing times between the various transitions. We begin the estima-

tion process in the next section.

3. THE LIKELIHOOD FUNCTION

If the Markov renewal process is observed through time T,

during which n transitions take place, the data will have the

form

(XoT,XI,..TnXnW ) =(xotl,Xl,...,1 tnn w

0 n n 'xn'!
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where X is the state initially occupied, Xi is the state

occupied after the ith transition, and Ti is the waiting

time between the (i-l) s t and ith transition. The likeli-

hood function is then proportional to

n s*-l I j=l

where qj(t) is the probability density function corres-

ponding to Q (t) and

~ij
nw = T - t ! .
i=l

Using equation (1), L can be rewritten as

=I Xi-l'X j~i(i] = xL- ' j~l Fxn1 (w)Pxn

where f ij(t) is the probability density function corresponding

to F i(t). This is the same as the likelihood fmnction derived

by Moore and Pyke (1968).

In most practical applications there will not be enough

data to adequately estimate the waiting time distribution func-

tions F directly, with no restrictions placed on F. Thus it

will not usually be feasible to estimate F through the empir-

ical distribution function. Instead it will be necessary to

restrict the class of distribution functions to some general

parametric family and then estimate the indexing parameters of



this family. It will also be true that in most practical

applications F will be absolutely continuous. We there-

fore assume that F is a member of some parametric family

of continuous distributions, indexed by the parameter vector

a . We will then write as FTj the distribution function of

the waiting times between transitions from state i to state

j, with ft. denoting the corresponding density function.
LJ

Then letting nru denote the number of observed transitions

from state r to state u, L can be further rewritten as

~ Le Lp - [L F (w)] LP , (2)

where
n

s ru
LO = T f f2u(t
~ r,u=l k=l ru

with tru(k) being the observed waiting time between the

(k-l)st and kth transition from state r to state u, and

S n

L = l p ru2 r,u-i ru

Thus the sufficient statistic for this model is a vector

Z = (W, z z 2 ), where Z denotes the vector of observed

waiting times, tru(k), between pairs of states, and Z(2)

denotes the vector of transition counts nru.
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4. THE FORM OF BAYES ESTIMATORS

We consider a Bayesian treatment of the estimation problem.

This is desirable because of the flexibility of the Bayesian

approach in incorporating varying amounts of prior information and

its success in handling the problem of limited amounts of relevant

sampling data.

We now derive Bayes estimators of P and a using squared

error loss. Thus we require the mean of the posterior distribu-

tion of P and e. Let the prior joint density of P and 9

be denoted by 7. Then the Bayes estimator of P is

E(PIZ) = f PL7Td~de
fL rdFde

The form of the Bayes estimator will simplify substantially

if we assume prior independence of P and 0, i.e., that - can

be written in the form

= 7(P). (9).

By using equation (2) we can rewrite the normalizing constant,

fL 1dPde, as follows:

First, to simplify notation, let

Fe (w) = F and PxnJ PJ"

Xn.Vj 9 J

Then

f L r dPde
s e

fL Lp.(P)(e)dPde - fL F LpPj7(P)i(6)dPd8
- - " "l ~ ~ "
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Similarly,

P L dPO

7 L ( )deif PL (P)d]- L F (e)d PL Pj7(P)d "A

To obtain the Bayes estimator of e we need to compute the

posterior expectation,

The numerator of equation (6) can te rewritten as

feL~dde =

fLiT(e)d 1L (P)d - [LeLeF r(a)d LP7T (P)dP] j7
-~ 21 If " JL L

Note that under the assumption of independent prior distributions

for P and e the calculation of Bayes estimates involves separate

evaluations of integrals with respect to e and integrals with
respect to P. Also note the substantial simplicatlon that occurs

when the terminal time T happens to be a transition time, i.e.,

when w=O. In this case the Bayes estimators are Just

J= L 7r(P)dP'
=E(PZ~) L, i(P)dP



and

f Tr( )dQ
9* = E(elZ ( I) =

fLelr( )dO

In the general case where w>O the Bayes estimators

take a form adjusted away from ?* and 6*. Szecifically,

using equations (4) and (5), we can write the Bayes estimator

P as
ass

P* S
- 1I* - Z cjt4B . z )

s

j=l

wn e re

J

and

6. = ( j ( ) .

The Bayes estimator 6 can be written using equations (4) and

(7) as

0* 6Fz 1z(

J=1 J

The practical use of the Bayes estimators P and B

is limited by the fact that integration of functions cf e

involving F, is required, and F is generally a quite

complicated function of 9. An alternatIve cair of eszimators



and 8 can be derived by replacino F, in ecuations (S and

(9) with the constant (over i), then as

Just a, we hav t simolified estimators,

S= E(ejz()) ( = e*)

and

S

j i -

.CDELS FOR WAITING TIME :IsTR...::.:..

We seek carametric familfes cf 2ontinucus :osi':1e random

variables which are su::coCenal[ roc n -o represent a wiae range

of possible waitino time distribuicns, whiea7: sae e
bein g analytically tractable in terms of the Bayesian es:mat::n

crccedures developed in Section I. :wo famiIIes of 4s:.3i ti ns,

eacn soecified by 2 parameters, immediately suges. :,..se s

fr this purpose: the lognormal and the gamma. The-., are zis-

cussed in Johnson and Kotz [1970] and Mann, Schafer, and -i ..

walla [1974. A random variable T is said to have a two-

parameter) loznormal distribution if the natural logarithm of

has a normal distribution (see Aitchison and Brown [-.57).

Thus the distribution of T is determined by the mean i and
2

variance of a of the normal distribution. When u is small

the distribution of T itself will be not unlike that of a

normal distribution. The gamma family specifies that the prcb-
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abil'Iy densit:y function of T would be given by

Yt) =

for t>2 where a and S are positive parameters. Here agaln

it is possible to transform the random variable : to a very

gcod approximation of normality for only moderately large a.

The Wilson Hilferty [1931] approximation can be used to show

that has approxImately a normal distribution with mean

/ S, '" (_ -l'c) _ and variance a /

7t a'so should be noted that the distribut ion c :cz T

ore n.early normal than the d"is:ribution f sothat a

oo transfojration to nrmality -s ideal in the l norma

disri'bution case and helrs in the gamma dfstribut -o case,

whie= a ube rcot transformaticn is best in the 7amma dfstributian

case.

From a strictly empirical viewpoint it may be desirable tc

se thAe data to choose a transformation to normality from among

the nower transformations consdered by Box and Cox 71

:hese Incl-ade the cube rcot transformation; the 1ciarithmio

transformation is a limiting case. Thus we see that it will

.enerally be possible to transform the waiting time data to

achieve approximate normality.

Therefore we assume that it is possible to deal with trans-

formed values U of the original waiting times T, these trans-

formed values U having apcroximate normal distributions. The

oroblem of statistical inference about the distribution of wai--

ing- times then becomes one of inference about the means and

/ariances o' the normal random variables .
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o. BAYES ESTIMATES OF THE WAITING TIME DISTRIBUT:O11S

Suppose that it is possible to transform the vector of

2
all waiting. times Tr (ss2 ) to a multivariate normal random

2
vector U (s xi). We seek to estimate the mean vector

(s xl', and the variance matrix t (s2s ' cf .

Assume that a crior distribution for w and the Drecision

matrix R is chosen from the natural conjugate family

of normal-Wishart distributions. We then assume that the prior

distribution has the following structure: The conditional dis-

tribution of given that R = r is a multivariate normal
S

distribution with mean vector vi0 (s-l) and precision matrix

vo Ivo> 0), and the marginal distribution of R is a Wishart

distribution with a (a>S2 1) degrees of freedom and positive
0 0

22definite precision matrix 7 (sXs Lbe a

random sample distributed like U.

Under these circumstances the essential basis for inference

4s contained in the following theorem.

Theorem (See, e.g., DeGroot (1970;p.17S).)

The posterior Joint distribution of P and R when

u,(i=i,...,n) is as follows: The conditional distribution

of v when R = r is a multivariate normal distribution with mean

vector vj1 and precision matrix (vi)r, where Vi =V o + n and

; + nU

The marginal distribution of R is a Wishart distribution

with al = ±o + n degrees of freedom and precision matrix T1, where
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von
= + S + V ( o-0)(po -U)

and

n

S (U 4 -U)(U -U)

If we now define a multivariate quadratic loss function

of the form

L (p,7) = (p -7)'1(P -7)

we can obtain the Bayes estimator of w as the mean of the

posterior distribution of p, namely,

Also for a loss function of the form

L(t,) =tr(t-f) ,

the 2ayes estimator for t is

Li

a+n-2(s 2-1)

(See, e.g., Press (1972;pp 168ff).).

7 BAYES ESTIMATES OF THE TRANSITION PROBABILITIES

We consider a Bayesian approach to estimation of the

transition probabilities P in the Markov renewal process.

Martin [13] developed a methodology for Bayesian inference

about the transition probabilities of a Markov chain. He noted

that in this case the observed transition counts in each row

of P come from a multinomial distribution with cell probabil-

ities depending in a particular way on P. A matrix beta
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distribution is then postulated as appropriate for a prior

distribution. This is just the distribution of s independent

Dirichlet random vectors (see Johnson and Kotz (1972;p.233).

The matrix beta distribution is, like the Dirichlet, closed

under sampling so that the posterior distribution is also a

member of the matrix beta family.

Specifically, the matrix beta distribution is determined

by a matrix parameter M. If M0  is taken to be the matrix

parameter specifying the prior distribution and a matrix of

frequency counts N is observed, then the posterior distri-

bution of P is matrix beta with matrix parameter M=M +N.

Under quadratic loss the Bayes estimator of P is then given

by the posterior expectation of P. But the expectaticn of

a random matrix P having a matrix beta distribution with

matrix parameter M=[i I is simply,

EP (!l)

s

where mi+ =l mij (See Martin [1967; p. 17].)

This same approach is followed by Brock [1971] for the Markov

renewal process when the waiting time distribution are assumed

known.

For Bayesian estimation in the general Markov renewal

process, we require, according to equation (10), two specific

conditional expectations, E(PIZ (2 ) and E(PPx JZ(2)).

n
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The first conditional expectation is available directly from

equation (11). The second conditional expectation can be

computed as follows: We basically require, for P having a

matrix beta distribution with matrix parameter M = [mru],

the expectation

E(PPij) = [EPruPij].

But

EPP = Cov(PuP ) + EPru EP

rij ru' ij u ij-

Now from Martin [1967;p.18] we have

(mr+ (mi++!)Cov~ ) ru ij
ru' -j (m 2 (M +1r)4

mru (mi+-mij)

2 i=r,J=u,
(mr+) (mi++l)

- 0 ,otherwise.

Therefore, making use of equation (11) and simplifying,

we have

=miuni

E(ruP m r+ ++ ' i=r,J3u,
ru j Mr+ (i++1

ru (mi+l) , i=r,J=u,

mr+(mi+ (12)

- rumij i+r.m r+ mi+
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Substituting the calculated values in equations (11) and (12) F

into the estimator given in equation (10) we obtain after

simplification,

mp rurx
ru mr+ rx n

(13)
mrr

a- , r=x
umr+

where

m m +1
S- * n - * mn+

J mu j mX ++1 u mX + +1

a n
u m

al n

It is easy to verify directly that with the matrix beta

prior distribution either the Bayes estimates P or their

approximations P have row sums equal to one and have non-

negative entries. Hence either ? or T can be used as a

legitimate transition probability matrix.

8. A SIMULATION EXAMPLE

This section illustrates the application of the statistical

techniques developed in the previous section to simulated data.

The use of simulated data is advantageous at this point because

a direct comparison can be made between results based on esti-

mated process parameters and true process parameters.
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Data from a 3-state Markov renewal process with log-

normally distributed interarrival times were simulated on an

IBM 360/67 computer at Carnegie-Mellon University. The tran-

sition probability matrix was

P= .2 .5 .3

.I .3 .6

To give concreteness to this example, imagine that state

i=1,2,3 indicates the number of projects that an analyst

has been assigned to work on simultaneously. Often when a

project is completed, it will be replaced immediately with

another one. Hence there is high probability of an interstate

move. The analyst is never assigned more than three projects

and always is assigned at least one. The length of time a

project will take to complete is a random variable. t is pos-

sible to complete two projects simultaneously and two additional

projects might be assigned to the analyst currently working on

one. The 9 waiting time distributions between transitions

are taken to be lognormally distributed. The means p and pre-

cisions T (reciprocal of the variances) of these distributions

are given, correspondingly to the entries of P, as the first

line of each of 9 cells in Table 1, below.
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TABLE 1

True Waiting Time Distribution Parameters

(il)(1, 1/4) (2, 1/9)

4.5 20.1 665.1

2.7 2.7 7.4

(1, 1/9) (2,1) (2, 1/4)

244.7 12.2 54.6

2.7 7.4 7.4

(2, 1/9) (2, 1/9) (1,1)

665.1 665.1 4

7.4 7.4 2.7

Thus, for example, the logarithm of the time between a trans-

ition from state 2 to state 3 was normally distributed with a

mean of 2 and a standard deviation of 2. The expected

interarrival times T can be calculated from

ET = exp(+ 2)

and are given as the second line of each cell in Table 1.

Since the lognormal distribution is skew the median interarrival

times exp (u) differ from the mean interarrival times and are

given as the third line of each cell in Table !. in our illus-

tration, the units of T might be days.

The Bayes procedures outlined in the previous sections

require the specification of the parameters of the prior dis-

tributions. There are 9 waiting time distributions, each of
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which requires that 4 parameters, Uo0 , 'V0  a 0' and Bo =! To
20

of the normal-gamma conjugate prior distribution be set.

We will illustrate the technique with independent and identical

prior distributions on all waiting time distributions. There

is, of course, no reason why this should necessarily be the

case in a practical application; we do this only for ease of

illustration. In order to give a reasonably diffuse prior

specification, while not being too far off from the target,

we choose our hyperparameters to be po = 1, 0 = 1, Uo = 1,

and 60 = 4. This leads to prior (minimum mean squared error)

estimates (no-data) of the means and precisions of i. = 0 = 1

and ^T = (a/ - (1/4) Prior estimated expected inter-

arrival times can then be calculated as

ET = exp( + 20.086
-T

and the estimated median waiting time would be

e" = 2.718.

Mote that these estimated means and medians are not Bayes with

respect to squared error loss. They are only given to illustrate

their approximate magnitude, since our real concern is with

p and T-1 Naturally since the actual expected waiting times

vary substantially among themselves this estimate misses some

of the expected waiting times by a substantial margin.

To complete the specification of the prior parameters we

need to give the 3x3 matrix parameter M of the matrix beta-o

distribution for the transition probability matrix P. We chcose

.............. .m
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5 3 2

M 2 6 2
-O

2 3 5

which leads to prior estimates of P as

.5 .3 .2

= .2 .6 .2

.2 .3 .5

Note that it is not necessary for the row sums of M4 to be
-O

10, they could be any positive number.

We now wish to show how these prior estimates will be

modified with data. Simulated data of 91 transitions (be-

ginning in state 1), together with their associated lognormally

distributed waiting times are used. The last state occupied

was x =2 and the observed time in this state before termina-
n

tion was w = 21.3. The stopping rule used was to stop when

the total observation time was 631.8. The "observed" transi-

tion counts, based on the simulation, are given by

2 7 3

N = 7 20 13

2 12 25

Thus the maximum likelihood estimate of the transition probabil-

ity matrix is

.167 .533 .250]

•.175 .500 .325

051 .308 .641j
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Table 2 gives the maximum likelihood estimates of the

parameters of the lognormal distributions of waiting times.

The format of the table corresponds exactly to that of Table 1.

Thus the maximum likelihood estimate of the mean waiting time

for a transition from state 2 to state 3 is 538.215, while a

comparison with Table 1 shows the true mean waiting time to

be 54.6.

TABLE 2

Maximum Likelihood Estimates of the Waiting

Time Distribution Parameters

(1.401, 4.120) (-0.139, 0.605) (3.-546, 0.390)

4.583 1. 989 12,107._ 2

0 .59 .30 46 . 5

(1.77 , 0.533) (2.013, 1.220) (2.256, .124)

1.930 11.273 538.215

(-0.045, 6.331) (1.696, 0.208) (1.07S, 0.673)

1.035 60.331 6.173

.956 5.452 2.939

Employment of the Bayesian methods discussed in Section 6

produced the estimates e of the parameters of the waiting

time distributions contained in Table 3. Table 3 has the same

format at Tables 1 and 2. We have simply displayed the
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estimated expected waiting times as exp( + <-) and the

estimated median waiting times as exp (p), since our interest

centers on minimum mean squared error estimation of p and T.

TABLE 3

Bayes Estimates of the Waiting Time

Distributicn Parameters

1.267, .466) (.003, .435) (3.135, .105)

I0.396 . 71 2,631.507

3- 5

(' .677 ,--- (i. 9 , -67)

-o -. , C

1.354 5.16 2.930

2omparison of Tables i, 2, and 3 plus the prior estimates

shows that (1) the posterior Bayes estimates effectively

restrain the rather extreme fluctuation that afflict these

small sample maximum likelihood estimates, and (2) the posterior

Bayes estimates are overall slightly better than both the prior

Bayes estimates and the maximum likelihood estimates.

Ignoring the observed terminal waiting time in state 2 of

w = 21.3, the estimated transition probability matrix is



lnccrporatin T the observed terminal waiting time acccrcJn,;

to th e crocedire oil Section 7 requ-*res -hat- we acae

F ,A2'l.3 for -1l,2,3 to incorporate in the estimator c:ven

by equatioDn K'13). These calculated va-les are

.3 47, and= , 2"

and hence the estimate Fis

- I

his compares favorably with the maximum imkel stccording

and the prior estimates.
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